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An efficient method for computing adjoint based, functional sensitivities has been devel-
oped in a manner that minimizes maintenance required to reflect subsequent updates to the
function code. This method has been applied to an unstructured mesh, Navier Stokes flow
solver, within an object-oriented, polymorphic framework. The use of Complex Taylor Series
Expansion (CTSE), within this framework, allows for flexible application in the computation
of derivatives.

Nomenclature
α angle of attack
β design variables
χ mesh parameters
�t time step
ε machine precision
� imaginary component
λ adjoint variable vector
∇ gradient operator
Ø order notation
� real component
Ĩ identity matrix
h perturbation size
i

√−1
Ic cost or objective function
L lift
N Newton iteration index
ncv Number of control volumes in the mesh
ndv Number of design variables
nst Number of nodes in a computational stencil
Q flow variables
R(1) 1st order spatial residual
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R(2) 2nd order spatial residual
V ol volume of fluid element
x, y, z Cartesian coordinates

I. Introduction

COMPUTATIONAL sensitivity analyses of problems in fluid mechanics have been of interest since the early
1970’s. In Hicks, Murman and Vanderplaats1 1974 paper, sensitivity information is used in conjunction with a

gradient-based optimization method to improve the aerodynamic characteristics of airfoils. The governing equations
were based on potential flow assumptions and sensitivity derivatives were obtained using finite-differences. Since this
early exploration into design optimization, there have been substantial advances in both the fidelity of the physical
models as well as the methodologies used for obtaining sensitivity information.2–8

Techniques for obtaining sensitivity derivatives can be characterized as either direct differentiation methods
or adjoint methods. In direct methods, derivatives of the flow variables with respect to each design variable are
computed initially, and objective or constraint sensitivities are subsequently derived from these quantities. This
technique is advantageous when there are many objectives or constraints, but suffers in efficiency when there are
many design variables. Examples of direct or forward differentiation methods include Sadrehaghighi et al.,9 and
Burg and Newman.10

When the number of design variables substantially exceeds the number of objective and constraint functions, an
adjoint method is more suitable. In an adjoint method, the objective function is augmented with the flow equations as a
constraint using Lagrange multipliers. This technique can be derived using either a discretization of the differentiated
governing equations (continuous), or a differentiation of the discretized governing equations (discrete). For examples
of continuous methods see Pirronneau,11 Anderson,12 and Jameson,13 whereas discrete adjoint methods are described
in Nielsen andAnderson14 and Giles et al.15 In either approach, the end result is that an auxiliary set of linear equations
(adjoint equations) are solved for each objective function or constraint, and the derivatives for each design variable
are obtained using a matrix-vector multiplication. In addition to its utility in obtaining sensitivity information, the
adjoint solution can be used in both error analysis and mesh adaptation.16–19

Previous work reported by Nielsen and Anderson,14,20 describes an adjoint methodology for obtaining derivatives
which are discretely consistent with the corresponding flow solver. In the referenced work, the adjoint solver has been
obtained by hand differentiation of the baseline flow solver equations. The resulting derivatives are highly accurate,
but the effort required to address changes in the flow code via updates and extensions is prohibitive.

The objective of the current study is to develop an adjoint method which yields sensitivity derivatives that are
discretely consistent with a numerical pde solver (Navier Stokes equations in this case), and is of a form which
facilitates ease of maintenance and extensibility. These attributes are necessary in order to bring the development
cycle of sensitivity analysis codes into concurrency with flow solver technology.

There are two technologies with the potential to address these goals. These are automatic differentiation (AD)
and complex Taylor series expansion (CTSE).

Automatic differentiation is, as the name implies, a method for differentiating a function solver automatically
without the need for hand differentiation. This is usually accomplished by applying a transformation routine to the
original function solver code to generate a new differentiated function solver code through automated chain rule
applications or operator overloading. A number of AD codes are currently available. Most of these codes implement
only direct differentiation, though a small subset of these can implement adjoint methods.21–23

As in hand differentiation, AD provides exact discrete derivatives. Its implementation significantly reduces the
time and effort needed to write and maintain a hand differentiated code. However, there are a few disadvantages. The
application ofAD is limited to those function codes written in languages currently supported. Difficulties encountered
in implementation must either wait for a new AD code release or rely on modifications to the function code and or
the transformed code for resolution. In addition, the efficiency of AD transformed code suffers in comparison to hand
differentiation. Finally, anecdotal accounts suggest that applications of AD to a primal code are not as straightforward
as one might imagine. However, with continual improvements addressing these disadvantages, it is likely that AD
codes will be the obvious choice for sensitivity development in the future.
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An alternative to AD transformation can be found through the use of the complex Taylor series expansion. This
method which is explained in detail in section (IV.B) is, by itself, simply a way to compute very precise discrete
partial derivatives. However, the combination of this tool with polymorphic object code and a few adjoint specific
routines, results in a method which has a number of advantages.

As inAD, derivatives can be computed with the accuracy of hand differentiation, but with minimal implementation
and maintenance costs. Furthermore, this method can be applied to any code which allows complex number data
types. Poor efficiencies associated with a complete CTSE conversion are minimized through a naturally targeted
application. A disadvantage to this approach is the necessity to compute and store the linearized residual sensitivity
matrix. This can result in rather large memory requirements. In addition, to properly apply CTSE, it is necessary to
ensure that all functions, including intrinsics, have a complex valued implementation.

This combination of CTSE within a polymorphic, object-oriented pde solver is used to generate adjoint based
sensitivities without major modification of the original code.

The purpose of this paper is to present details of this new development in sensitivity code technology.

II. Flow Solver
The sensitivity methods discussed in this study are applied to an unstructured mesh, three dimensional, fluid flow

solver.24–30 The spatial discretization for this code is based on a node centered scheme in which a control volume
is constructed around each of the mesh points in the field. The solution algorithm is based on a backward-Euler
time discretization where an approximate solution of the linear system required at each step is obtained using the
symmetric Gauss-Seidel point-iterative method described in the references cited above.

The solver is applicable to flow regimes ranging from the incompressible Euler equations, to the compressible,
unsteady, turbulent, Reynolds averaged Navier Stokes equations. For computation of high Reynolds number flows,
several turbulence models are available, including Spalart-Allmaras,31 and q − ω32 models. The solution of the
turbulent variables in the flow solver is loosely coupled with the solution of the other flow variables.

The flow solver code has been designed in a modular fashion following an object-oriented model implemented
using C++. In addition to the modularity provided by the model, type polymorphism is also utilized through
templating, in instances where similar function evaluations are needed for multiple data types. These properties of
the solver code are used to great advantage in computing sensitivity information.

III. Adjoint Solver
The primary objective of the current work is to develop an adjoint solver that is easily maintained and produces

sensitivity derivatives which are consistent with the flow solver even as the flow solver code evolves. To this end, the
adjoint solver reuses as much of the flow solver code as possible. The following discussion of the flow solver/adjoint
sensitivity code will include primarily only those issues that directly affect sensitivity solutions.

A. Adjoint Formulation
The sensitivity of an objective function (Ic) can be obtained by expanding the total derivative of the objective with

respect to the design variables (β). This differentiation includes explicit dependency on the design variables as well
as implicit dependency through the mesh (χ ) and solution variables (Q). The expression for objective sensitivity is
presented in equation 1.

Objective Sensitivity:
dIc

dβ
= ∂Ic

∂β
+

[
∂Ic

∂χ

]
∂χ

∂β
+

[
∂Ic

∂Q

]
∂Q

∂β
(1)

Similarly, the sensitivity of the flux residual is expressed by equation 2.
Residual Sensitivity:

dR

dβ
= ∂R

∂β
+

[
∂R

∂χ

]
∂χ

∂β
+

[
∂R

∂Q

]
∂Q

∂β
(2)

Different combinations of equations (1), and (2), lead to two alternate discrete methods for computing sensitiv-
ities. These methods are termed the direct and adjoint methods, each of which have their distinct advantages and
disadvantages.
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The direct method involves solving for ∂Q

∂β
from the residual sensitivity equation (2) and substituting the result into

the objective sensitivity equation (1). The solution of the ∂Q

∂β
term must be solved for each independent design variable

(β), thus making this technique very expensive for a large number of design variables. The method is advantageous
however, when it is necessary to evaluate a large number of objective or constraint functions. For problems where
there are few objective functions but many design variables, an adjoint method is more appropriate. The adjoint
method is obtained by multiplying equation (2) with a Lagrange multiplier (λ), and adding it to equation (1), noting
that dR

dβ
= 0 for a steady state problem.

dIc

dβ
=

{
∂Ic

∂β
+

[
∂Ic

∂χ

]
∂χ

∂β

}
+ λT

{
∂R

∂β
+

[
∂R

∂χ

]
∂χ

∂β

}
+

{[
∂Ic

∂Q

]
+ λT

[
∂R

∂Q

]}
∂Q

∂β
(3)

Since the choice of the Lagrange multiplier is arbitrary, the ∂Q

∂β
term can be eliminated by solving the Adjoint

Equation (4).
Adjoint Equation: {[

∂Ic

∂Q

]
+

[
∂R

∂Q

]T

λ

}
= 0 (4)

Substituting the recently solved adjoint variables back into equation (3) allows the formulation of a complete adjoint
objective sensitivity equation (5).

Adjoint Objective Sensitivity:

dIc

dβ
=

{
∂Ic

∂β
+

[
∂Ic

∂χ

]
∂χ

∂β

}
+ λT

{
∂R

∂β
+

[
∂R

∂χ

]
∂χ

∂β

}
(5)

B. Solution of the Adjoint Equation
The solution of the adjoint equation (4) is obtained in a similar manner as the flow variable solution. Equation (6)

presents a form of this sparse matrix problem, which can be solved using a point iterative method. As in the sparse
matrix solution of the flow solver, the symmetric Gauss Seidel scheme25 is used to solve this system of linear

equations. The inclusion of a pseudo time derivative term
(

V ol
�t

Ĩ
)

allows an increase in diagonal dominance by

reducing the CFL number, thereby improving the robustness of the adjoint equation solver.14

Iterative Adjoint Equation:

[
V ol

�t
Ĩ + ∂R(1)

∂Q

]T

�λN+1 = − ∂Ic

∂Q
−

[
∂R(2)

∂Q

]T

λN (6)

where �λN+1 = λN+1 − λN

This iterative form also allows the use of a first order spatial residual linearization (R(1)) on the left hand side of
the equation. The second order spatial residual (R(2)) on the right hand side drives the accuracy of the final solution.
The first order residual on the left hand side results in an iteration matrix which generally has a better condition
number than the matrix of the second order residual, and thus better convergence properties.

Solution of the adjoint equation requires the partial derivatives of the objective function with respect to the flow

variables
(

∂Ic

∂Q

)
as well as linearization and transposition of the flux Jacobian

(
∂R
∂Q

)
. The methodology and associated

issues related to computation of these partial derivatives are presented in the next section.

IV. Partial Derivative Computations
The partial derivatives in equations (1) and (2) necessary to solve the adjoint equations, and to assemble the total

sensitivity derivative can be computed in a number of ways. A hand differentiation technique that has been used
for developing an adjoint method applicable to turbulent flows on unstructured meshes is described in Nielsen and
Anderson.14,20 This method is tedious, error prone, and is not easily maintained as new functionality is added to the
flow solver. Other methods can be derived using Taylor series expansions. Two of these methods which have second
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order accuracy, namely central finite difference, and complex Taylor series expansion are compared for suitability to
this application.

A. Central Finite Difference
Taylor series expansions with both positive and negative perturbations in real space are given by equations (7)

and (8) respectively.
Taylor Series Expansions in Real Space:

f (x + h) = f (x) + h

1!
∂f (x)

∂x
+ (h)2

2!
∂f 2(x)

∂x2
+ (h)3

3!
∂f 3(x)

∂x3
+ · · · (7)

f (x − h) = f (x) − h

1!
∂f (x)

∂x
+ (h)2

2!
∂f 2(x)

∂x2
− (h)3

3!
∂f 3(x)

∂x3
+ · · · (8)

The central finite difference expression is constructed by subtracting these expansions and truncating at the h3

term, such that the truncation error for the derivative expression (9) is of second order.
Central Finite Difference derivative:

∂f (x)

∂x
= f (x + h) − f (x − h)

2h
+ Ø(h2) (9)

This technique requires two function evaluations to compute a second order accurate derivative. Furthermore,
when the function values differ by a small degree, the subtraction operation produces a very small number which
is then truncated to machine precision. This operation causes a loss of significant digits, and when divided by the
perturbation size (h), results in an erroneous derivative. This behavior imposes a lower bound on the perturbation
size and prevents accurate derivatives in areas of low function sensitivity.

B. Complex Taylor Series Expansion (CTSE)
The CTSE method33–35 is developed by performing a Taylor series expansion with a perturbation in imaginary

space (10). This requires of course that f (z) be a continuous, complex valued function which is real valued on a real
domain.

Taylor Series Expansion in Imaginary Space:

f (x + ih) = f (x) + ih

1!
∂f (x)

∂x
+ (ih)2

2!
∂f 2(x)

∂x2
+ (ih)3

3!
∂f 3(x)

∂x3
+ · · · (10)

The real part of equation (10) corresponds to the unperturbed function value with a truncation error of order O(h2).
Real Part:

�[f (x + ih)] = f (x) − (h)2

2!
∂f 2(x)

∂x2
+ · · · (11)

Similarly, the imaginary part of equation (10), divided by the perturbation size, yields a second order accurate
expression (12) for the first derivative.

Imaginary Part:

�[f (x + ih)]
h

= ∂f (x)

∂x
− (h)2

3!
∂f 3(x)

∂x3
+ · · · (12)

Due to the fact that no subtraction is required with CTSE, it does not suffer from subtractive cancellation error.
This allows the perturbation size to be as small as the order of numerical precision, thereby driving the truncation
error to machine zero. A typical perturbations size is the square root of machine precision (ε). Furthermore, only one
function evaluation is necessary to compute a derivative, though there is additional overhead involved with computing
in complex arithmetic. This results in an expense comparable to the central difference method.

An illustration of the effects of subtractive cancellation error can be seen from the plots in Fig. 1. These plots
compare the error in the computed derivative using both central finite difference and CTSE methods on the function
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Fig. 1 Central Finite Difference vs. Complex Taylor Series Expansion.

f (z) = ez, where complex number z = a + ib, and f is strictly real valued on a real domain. Both solutions converge
according to the second order truncation error up to a point. As the perturbation size approaches 10−6, subtractive
cancellation error dominates in the central finite difference solution, and the accuracy deviates accordingly. The
CTSE solution continues to converge to a minimum error at a perturbation size of 10−8, which for this case is ε.

V. Sensitivity Computations
Computation of the partial derivatives in equations (1) and (2) can be achieved using the methods described

previously. However, there are numerous factors that must be addressed in order to obtain an efficient implementation.
A discussion of the methods used to improve efficiency in the current implementation are presented in the following
sections.

A. Efficiency
In the solution of the adjoint equation, a straightforward implementation of the proposed method would be to

apply the CTSE method to every function in the flow solver and to apply perturbations sequentially for each of the
dependent flow variables in the field. After each perturbation, the residuals throughout the field can be computed and
the derivatives extracted from the imaginary part. A similar technique may be employed to evaluate the remaining
terms in the sensitivity equations once the adjoint variables are obtained. This method has an obvious disadvantage
in that the quantity of extraneous computations performed makes it extremely inefficient.

1. Targeted Differentiation
One obvious step toward alleviating inefficiencies in the complete differentiation is to apply the CTSE method only

to functions necessary to evaluate the terms of interest. This targeted approach saves execution time, by eliminating
many extraneous complex computations, but also limits the applicability of the code to problems which involve only
targeted functions.

With the use of a fully templated (ie. polymorphic), object oriented code framework, both complete and targeted
approaches are easily implemented. The term “polymorphic” refers to an objects ability to alter its form based on
the data type that it is asked to work with. For example, a grid object created as type REAL, would modify its
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variables, member functions, and child objects to operate using type REAL. That same grid object created using
type COMPLEX or INTEGER would modify its attributes to perform equivalent operations on its given data type.
The catch is, of course, that one must have multiple definitions for all functions and intrinsics used in the object.
Derivatives in this framework may be computed by simply passing properly perturbed complex parameters into a
function and then reducing the imaginary value of the result.

Complete derivative computation by the method described above is predicated by the assumption that the function
properly encapsulates all of its dependencies. These “black box” functions obscure the details of evaluation from
the programmer, thereby allowing derivatives to be computed without having to be concerned with implementation
details.

2. Utilizing Localized Perturbation Effects
A further method for reducing the number of extraneous computations can be developed by recognizing that,

in many instances, the functional data dependence is localized on a reasonably small computational stencil. These
stencils describe the local net of data points which contribute to the function result.

Figure 2 shows an example of two first order stencils for a residual computation on a two-dimensional rectangular
control volume. The stencil on the left, used in computing ∂R

∂Q
, involves only the nearest neighbors which have edge

connections to the center node. The metric stencil on the right of Fig. 2 is used to compute ∂R
∂χ

, and is composed of all
of the neighbor nodes which form geometric elements in common with the center node. For a second order accurate
scheme the corresponding stencil is extended to include all the second nearest nodes as well.

By exploiting the fact that evaluation of the residual over a control volume involves only localized data, multiple
columns of the matrix can be computed simultaneously, by perturbing flow variables in non-overlapping regions of
dependency.

Figure 3 is an illustration of a set of non-interfering flux stencils for a first order Euler solution.
The stencils denoted by the bold edge connections consist of all of the nodes affected by a perturbation of the

node at the center of each stencil. The contributions from the perturbation nodes can be computed simultaneously
for all of the nodes in each independent stencil.

By arranging groups of non-interfering stencils into sets of independent stencil lists, sometimes referred to in
the literature as “colors”, the number of residual calculations required to compute the entire linearized residual is
reduced from the total number of control volumes (ncv) to the total number of stencil lists (nst ).

Currently, non-interfering stencil lists are constructed by sequentially traversing the list of mesh nodes and
checking each stencil for overlap with stencils that have been previously added to the non-interference list. If overlap
is not detected, it is added to the list and the next node is compared. When no additional non-interfering stencils can
be added to the current list, a new list is started using the next unlisted node stencil. The procedure continues until
all nodes have been included in a non-interfering stencil list.

This method for generating non-interfering stencil lists results in an unbalanced set of lists, in which early lists
contain many stencils, and later lists may contain as few as a single stencil. The inefficiencies related to these

Fig. 2 First Order Flux and Metric Computational Stencils.
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Fig. 3 1st Order Independent Computational Stencils.

unbalanced stencil lists have been mitigated by the use of localized function evaluations, which is explained in
further detail in following sections.

In Table 1, stencil lists were compiled for three meshes with differing node counts and element compositions. The

number of stencil lists required to include the entire domain for both first and second order flux linearizations
(

∂R
∂Q

)
,

and the metric linearization
(

∂R
∂χ

)
are reported. The element ratios of hexahedral to prism volume elements are 2:1

for mesh 1, and 4:5 for mesh 2. These same ratios apply to meshes 1 and 2 for quadrilateral to triangular boundary
faces. Mesh 3 is composed almost entirely of hexahedral volume elements and quadrilateral boundary faces.

An examination of the data shows that the number of stencil lists generated, is independent of the number of points
in the mesh. The dependency instead relies upon the connectivity of the mesh elements, and the approximation order
of the desired linearizations (i.e. the stencil size).

For example, in linearizations with respect to metric parameters, the use of hexahedral elements increases connec-
tivity by including both edge nodes and corner nodes in the stencil. This reduces the number of independent stencils
in each list, thereby requiring a greater number of lists to encompass the domain.

3. Localized Function Evaluations
For integral functions such as lift or drag, evaluation of sensitivity with respect to some localized parameter can

also be limited to a localized domain. This reduction allows the speed of partial derivative evaluations to be greatly
increased by reducing the number of computations performed for each derivative from (ncv ∗ ndv) to (nst ∗ ndv),
where ncv is the total number of control volumes in the mesh, nst is the number of nodes in a local stencil, and ndv

is the number of dependent variables.

Table 1 Number of Stencil Lists Generated For Meshes of Varying
Size and Composition.

mesh nodes 1st order ∂R
∂Q

2nd order ∂R
∂Q

∂R
∂χ

mesh 1 3480 54 252 535
mesh 2 83317 62 275 380
mesh 3 103673 65 262 984
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A caveat is necessary here regarding turbulence models requiring a distance function calculation. In these cases,
the computational stencil of a control volume must also include the closest viscous surface point, consequently the
stencil is no longer localized. This dependency presents a problem in particular for parallel solutions across spatial
domains. Currently, sensitivities which involve a change in the distance function are computed sequentially over the
global domain. Thus for the turbulent flow regime, computing sensitivities with respect to large numbers of mesh
displacements is prohibitive. However this is a temporary limitation as a method is under development for computing
the distance function contributions independent from the localized evaluations.

4. Loss of Opacity
Implementing the methods discussed above for increasing efficiency is most easily achieved if all the residual

and force routines are coded in a “black box” manner such that the implementation details are opaque for purposes
of developing the adjoint code.

If the routines in an existing flow solver are not coded in this manner, it becomes necessary to trace all the
dependencies of the function to be localized, and include the effects. This loss of opacity can significantly increase
the complexity of the adjoint solver code.

In the current study, several flow solver functions were not coded with the desired encapsulation. Therefore, in
order to compute derivatives, it was necessary to ensure that all dependencies not encapsulated within these functions
were accounted for. This process proved to be more challenging than originally anticipated. A complete resolution
to this problem has yet to present itself, however a great deal of difficulty can be avoided if the desired functions are
written such that all dependencies are updated internally.

That being said, it should also be recognized that encapsulated functions are not necessarily ideal for use in
the flow solver. For example, in the flow solution, mesh metrics and flow conditions are generally computed upon
initialization, and remain constant for the duration of the solution process. Therefore, the functions that compute
these initial values are called outside the solver iteration loop. Segregation of these tasks into initialization functions
and time evolution update functions makes sense in terms of flow solver efficiency. The apparent conflict between
the flow and adjoint solver regarding efficiency and the form of functions in general will likely result in the increased
complexity and reduced maintainability of the adjoint code.

B. Storage of Residual Linearizations
The form of the iterative solution algorithm for the adjoint equation requires a residual linearization matrix on

both sides of the equality (6). Due to the formulation of the method, the matrix on the left hand side of the equality
may be a less accurate approximation of the true linearization of the residual which is required on the right hand
side. In the present study, the linearization on the left hand side is identical to that used in the flow solver so that
data structures can be reused. The matrix on the right hand side however, determines the accuracy of the adjoint
vector and therefore, must be a precise linearization of the full second order accurate residual whose computation
is dependent on both nearest and second nearest neighboring nodes. To accommodate the extended stencil requires
a deviation from the data structure used in the flow solution algorithm. While the flow solver uses an edge based
scheme to store flux Jacobians on the right and left hand sides of a flux face, storage of the level two contributions
are accounted for using a compressed row storage structure.36

VI. Results
A. Test Cases
1. Incompressible and Compressible Viscous Flow Over a Coarse NACA0012 Airfoil Section

The primary test case used for verification of the adjoint algorithm is a very coarse NACA 0012 wing section.
This wing section is a three-dimensional mesh constructed through an extrusion of a two-dimensional NACA 0012
airfoil geometry. Though the results for this mesh are not physically accurate, the small size is useful for validation
purposes.

Laminar cases were run for incompressible and compressible flow regimes in which sensitivities were calculated
using both forward mode CTSE and the adjoint method. For both cases the flow angle was set at 5◦, with a chord based
Reynolds number of 1.0E6. For the compressible case, the Mach number was 0.3. Additionally, an incompressible
turbulent solution was computed in which the one-equation Spalart-Allmaras model was used.
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Table 2 Incompressible 2nd Order Laminar: Sensitivity Comparison on Coarse
NACA0012 Airfoil Mesh.

Term Forward CTSE Adjoint Errorrel

dL/dα 1.07797088826512E0 1.07797088826523E0 1.054E−14

dL/dχy,2528 −1.32325310797162E0 −1.32325310797183E0 1.269E−13

dL/dχy,2537 4.6557836415831E0 4.6557836415915E0 1.806E−12

dL/dχy,2541 −1.61913550267185E0 −1.61913550267235E0 3.069E−13

The results of the sensitivity comparisons are presented in Tables 2, 3, and 4 which include the sensitivity of the
lift with respect to the angle of attack (α), and y-coordinate perturbations of three surface points. The locations of
the sampled surface sensitivities are shown in Fig. 4, with points at the leading and trailing edges and one on the
upper surface at the location of maximum thickness. The computed sensitivities show excellent agreement between
CTSE and adjoint methods for all three cases.

2. Incompressible Turbulent Flow Over a Refined NACA0012 Airfoil Section
The second case is a refined NACA0012 airfoil mesh constructed similar to the coarse mesh by extruding a two-

dimensional NACA0012 airfoil geometry. The wall spacings near the viscous surface have a normalized distance of
1.0E−5 which is appropriate for a laminar boundary layer. The airfoil portion of the mesh is shown in Fig. 6.

An incompressible turbulent flow solution was computed on this mesh with a chord based Reynolds number
of 1.0E6, and a inflow angle of 5.0o. The Spalart-Allmaras turbulence model was also used here to compute the
eddy viscosity. Sensitivities were computed using both forward CTSE and the adjoint method and are presented in
Table 5. The design variables compared in Table 5 are: angle of attack (α), and four surface node perturbations in
the y-coordinate. The locations of the sample surface points are at the leading and trailing edges and at the top and
bottom surface points at the location of maximum thickness. These points are labeled in Fig. 5.

Table 3 Compressible 2nd Order Laminar: Sensitivity Comparison on Coarse,
NACA0012 Airfoil Mesh.

Term Forward CTSE Adjoint Errorrel

dL/dα 4.8290302548364E−2 4.8290302528E−2 4.141E−10

dL/dχy,2528 −4.7797862766137E−2 −4.77978627641E−2 2.092E−10

dL/dχy,2537 1.7976576836922E−1 1.797657683707E−1 4.325E−12

dL/dχy,2541 −5.6316689338406E−2 −5.63166893346E−2 1.775E−10

Table 4 Incompressible 2nd Order Turbulent: Sensitivity Comparison on Coarse
NACA0012 Airfoil Mesh.

Term Forward CTSE Adjoint Errorrel

dL/dα 1.057700178815E0 1.057700178814E0 1.615E−12

dL/dχy,2528 −1.3289159690006E0 −1.3289159690007E0 1.279E−13

dL/dχy,2537 4.66574361639E0 4.66574361640E0 1.799E−12

dL/dχy,2541 −1.6221132170704E0 −1.6221132170709E0 3.082E−13

Fig. 4 Sample Locations of Sensitivity Derivatives on Coarse Airfoil Mesh.
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Table 5 Incompressible 2nd Order Turbulent: Sensitivity Comparison on
Refined NACA0012 Airfoil Mesh.

Term Forward CTSE Adjoint Errorrel

dL/dα 4.41121612E−1 4.41121607E−1 1.360E−9

dL/dχy,860te −1.2401370E+1 −1.2401731E+1 2.911E−5

dL/dχy,928le −8.6023914E−5 −8.6023926E−5 −1.411E−7

dL/dχy,9716btm 5.2893985E−2 5.28939654E−2 3.809E−7

dL/dχy,9771top 5.0922894E−2 5.09228677E−2 5.243E−7

Fig. 5 Sample Locations of Sensitivity Derivatives on Refined Airfoil Mesh.

Fig. 6 Closeup of Airfoil Section for Refined NACA0012 Mesh.

VII. Summary and Discussion
A method for computing adjoint solutions has been developed and implemented in an effort to reduce the mainte-

nance requirements necessary to remain consistent with the capabilities of an evolving flow code. This method has
been implemented and evaluated for accuracy, efficiency, and ease of implementation. The accuracy of the adjoint
computed sensitivities are shown to be consistent with CTSE sensitivities for suitably converged flow solutions. A
number of issues related to efficiency have been identified and solutions incorporated into the present implementation.

Targeted differentiation of routines, in conjunction with a means for computing function derivatives using simul-
taneous perturbations on localized computational stencils comprise the primary contributions to increased efficiency.
Although efficiency is substantially improved using these techniques, the implementation introduces a degree of
complexity which hinders maintenance and extensibility. Efficiency and maintenance design requirements for the
adjoint code may conflict with that of the flow solver. Resolution of this issue requires a cooperative approach to
development, and a significant familiarity with the flow code on the part of the adjoint developer.
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